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Abstract

The characteristics of natural convection of a heat-generating fluid with non-uniform distribution of volumetric heat release have been
studied theoretically. The analysis was based on analytical estimates method and numerical simulation. It has been found that under
particular conditions the details of volumetric heat release distribution over horizontal cross-sections of the liquid pool do not affect
the convectional heat transfer characteristics. The vertical distribution of the horizontal cross-sectional mean value of volumetric heat
generation completely determines the distribution of temperature in the bulk as well as the heat flux to the cooled boundary.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of NPP safety calls for investigations of
heat transfer processes under severe accident conditions.
In case of loss of coolant accident and the consequent core
degradation it is possible for the heat-generating core melt
to accumulate in the lower head of the reactor vessel. In
such case the problem arises of keeping the integrity of
the reactor vessel to prevent the outcome of radioactive
materials. Currently the major strategies of the core melt
retention for low and medium power reactors are external
cooling and re-flooding of the core. The efficiency of exter-
nal cooling is determined by the mechanism of water boil-
ing on the external surface of the reactor vessel. To avoid
the emergence of boiling crisis it is needed to know the
local heat flux distribution, which is governed by natural
convection of the heat-generating melt.

To validate the concept of the core melt retention in the
lower head series of experimental studies were carried out
most of them were conducted with model fluids such as
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.07.026

* Corresponding author. Tel.: +7 495 955 2291; fax: +7 495 958 1151.
E-mail address: ndv@ibrae.ac.ru (D.V. Nikolski).
water or salt melts and with prototype corium as well.
The pools were heated by direct current, special heating
wires installed in the pool, or by inductive heating (see [1]
for example). In many cases the distribution of heat gener-
ation over the pool was not uniform as it is assumed for
prototypic conditions. Particularly in case of inductive
heating the heat is released mainly near the boundaries,
the heating depth is governed by skin-effect and depends
on the inductive current frequency. Thus the adequacy of
heat transfer results should be justified to transfer results
of investigations to prototype conditions with uniform dis-
tribution of heat release. This issue is what the present
work is dedicated to. The study is carried out by means
of the analytical estimates method (see [4,5]) and numerical
simulation.

In Section 1 the problem statement and the physical
model are formulated. Considered in this section is the case
of thick heated layer (with respect to the free-convective
boundary layer thickness). The opposite case is presented
in Section 2. In Section 3 the applicability of the obtained
results for more complex geometry is discussed, the effect of
cooling of the upper horizontal boundary is considered as
well. Section 4 is devoted to numerical simulation of free
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Nomenclature

BL boundary layer
c specific heat
g acceleration due to gravity
H pool height (fluid level)
P pressure (hydrostatic component excluded)
Pr = m/v Prandtl number
Q volumetric heat release
Q cross-sectional average of Q

r radial coordinate
R pool radius

RaI ¼ gaQH 5

mvk modified Rayleigh number

T BL temperature counted from T0

T0 cooled boundary temperature
Tb bulk temperature counted from T0

u longitudinal velocity component in the BL
~U flow velocity in the bulk

Uz vertical component of ~U
Ur radial component of ~U
~v flow velocity
v transversal velocity component in the BL
y coordinate normal to the lateral boundary
z vertical coordinate

Greek symbols

a thermal expansion coefficient
d free-convective boundary layer thickness near

the lateral boundary
dQ heated layer thickness
k thermal conductivity
m kinematic viscosity
q density
v ¼ k

qc thermal diffusivity
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convection and heat transfer under the terms considered in
Section 1 in order to validate the results obtained in that
section.

1.1. Formulation of the problem: near-boundary heat-

generating layer

The following analysis is performed for laminar flow.
Stationary laminar natural convection of an incompressible
fluid is described by the following set of equations (see
[2,3]):

div~v ¼ 0; ð1Þ

ð~vrÞ~v ¼ �rP
q
þ~gaT þ mD~v; ð2Þ

ð~vrÞT ¼ vDT þ Q
qcp

: ð3Þ

Here~v is flow velocity, T – temperature, Q ¼ Qð~rÞ – volu-
metric heat release, m – kinematic viscosity, v – thermal dif-
fusivity, ~g – acceleration due to gravity, a – thermal
expansion coefficient.

Let us assume that a fluid is confined in a vertical cylin-
der of radius R and height H � R. We suppose that the
value of volumetric heat release does not depend on azi-
muthal coordinate

Q ¼ Qðr; zÞ; ð4Þ

where r is radial coordinate, z is vertical coordinate. We
also suppose that only the lateral boundary is cooled and
maintained at the constant temperature, the other bound-
aries are adiabatic. Temperature T will be counted from
that of the cooled lateral boundary. General boundary con-
ditions are discussed in Section 4.

Let us assume that heat is released in a layer adjacent to
the lateral boundary, with the thickness dQ less than the
dimensions of the cylinder R and H. First, we consider
the case of the heated layer thickness dQ much more than
the thickness of the free-convective boundary layer (BL)
near the lateral boundary

d� dQ: ð5Þ

Under condition (5), likely to [4,5], the heat generation in-
side the boundary layer can be neglected. Therefore the
motion equations for the boundary layer can be written
in the Prandtl approximation [3]

ou
oz
þ ov

oy
¼ 0; ð6Þ

u
ou
oz
þ v

ou
oy
� m

o2u
oy2
¼ gaðT � T bÞ; ð7Þ

u
oT
oz
þ v

oT
oy
� v

o2T
oy2
¼ 0; ð8Þ

where u and v are longitudinal and transversal velocity
components in the BL, Tb is the fluid temperature in the
bulk (outside the boundary layers).

Besides Eqs. (6)–(8) the following estimates for the
boundary layer are valid (see [4–7]):

v � d
z

u; ð9Þ

u2

z
� gaT b; ð10Þ

u
z
� v

d2
: ð11Þ

Here the derivation procedure is replaced with division by
the characteristic spatial scales which are of order d for ra-
dial coordinate and z for vertical coordinate, respectively.
In the bulk (outside the BLs) the effects of thermal conduc-
tivity and viscosity are unimportant so the motion equa-
tions in this region take the following form (see [4–7]):
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div~U ¼ 0; ð12Þ

ð~UrÞ~U ¼ �rP b

q
þ gaT b~n; ð13Þ

~UrT b ¼
Qðr; zÞ

qc
; ð14Þ

where ~U is the flow velocity in the bulk, q – density, Pb –
pressure in the bulk minus hydrostatic component, c – spe-
cific heat, ~n – unit vector directed upwards.

According to the mass balance condition (1) the flow
outside the boundary layer is much slower than inside the
BL

Uz �
d
dQ

u: ð15Þ

Here Uz is the vertical component of ~U . In view of that fact
that gravitational forces are almost balanced by pressure
gradient – as in hydrostatics, all state functions of the fluid
depend only on vertical coordinate. This gives a reason to
propose that temperature stratification is set up in the bulk,
in other words temperature in this region depends only on
vertical coordinate [4–7]. This conclusion is confirmed by
more accurate analysis below.

From the horizontal component of the momentum bal-
ance equation one can estimate the pressure variance order
over horizontal cross-section at the certain z

ðDpÞh � qU 2
r : ð16Þ

Through substitution of this expression into the vertical
component of the momentum balance equation one can
obtain the characteristic scale of the temperature variance
at the same z

ðDT bÞh �
U 2

r

gaz
: ð17Þ

Taking into account Eq. (9) and the fact that
Urjr¼R ¼ �vjd�y�dQ

we can obtain the following expression
for the radial velocity component in the bulk:

Ur �
d
z

u; ð18Þ

so we can express the characteristic temperature variance
as follows:

ðDT bÞh �
d
z

� �2

T b: ð19Þ

Thus in the region of z� d temperature stratification takes
place, so that temperature is a function of vertical coordi-
nate only, accurate to minor corrections of the order of
(19)

T b ffi T bðzÞ: ð20Þ

The energy balance equation can be written as follows:

Uz
dT b

dz
¼ Qðr; zÞ

qc
: ð21Þ
Eq. (21) that describes the energy balance in the bulk is va-
lid for any type of pool geometry. Geometrical factor can
have an effect on the fitting conditions for the boundary
layer and the bulk, which are boundary conditions for (21).

One has to notice that estimates (9)–(11) for the bound-
ary layer at the lateral boundary, as well as Eq. (21) and
estimates (16)–(19) for the bulk are not referred to the cer-
tain type of the heat release distribution. So they remain
valid for arbitrary distribution, with one restriction: the
heat generation inside the boundary layer should be negli-
gible with respect to the rest of the volume.

Another noticeable consequence of (21) is that vertical
velocity component Uz depends on radial coordinate just
as the heat generation rate

Uz ¼
Qðr; zÞ
dT b

dz qc
: ð22Þ

The mass balance (12) can be written as

oUz

oz
þ 1

r
o

or
ðU r � rÞ ¼ 0: ð23Þ

Through averaging (23) over the horizontal cross-section
one can obtain the following expression for the radial
velocity component at the BL periphery:

UrðRÞ ¼ �
R
2

d

dz
1

dT b

dz

 !
QðzÞ
qc

: ð24Þ

As we see, the radial velocity component is determined only
by the cross-sectional average value of internal heat release

QðzÞ ¼ 1

pR2

Z R

0

Qðr; zÞ � 2pr � dr ð25Þ

and does not depend on details of its distribution over the
radial coordinate r.

Eq. (21) can be integrated over the horizontal cross-sec-
tion with regard to the mass balance condition

2
dT b

dz

Z y>d

0

u � dy ¼ �R
QðzÞ
qc

: ð26Þ

One should notice that relations (24) and (26) define the
correspondence between the BL and the bulk characteris-
tics, thus closing the set of Eqs. (6)–(8) and (21).

Whether the value of Q does not depend on z the closing
relations (24) and (26) are similar to those for the case of
uniform heat generation. Then the temperature distribu-
tion in the bulk and consequently the boundary heat flux
distribution will also correspond to the uniform heat gener-
ation case.

In view of the stated conclusions inequality (5) becomes
the condition under which the correspondence between the
non-uniform (near-boundary) and the uniform heat gener-
ation cases can be reached. To specify this condition it is
necessary to determine the parameter d (the characteristic
thickness of the free-convectional boundary layer at the lat-
eral boundary). The thickness of the boundary layer at the
sidewall of a vertical cylindrical pool with uniform heat
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generation has been estimated in papers [6,7]. It is deter-
mined by modified Rayleigh number RaI, and for laminar
flow regime, which corresponds to RaI < 1012, its order is

d � R � Ra�1=5
I :

In the problem considered with non-uniform heat genera-
tion it is convenient to express the modified Rayleigh num-
ber through the volume average of the heat generation rate
Qv

RaI ¼
gaQvH 5

mvk
;

where k is thermal conductivity. The inequality (5) thus
takes the form

dQ

R
� Ra�1=5

I : ð27Þ
2. Thin heat-generating layer

Let us concern the case of axisymmetrical distribution of
heat release, as described in Section 1, but with the heating
depth dQ much less than the thickness of hypothetical free
convectional boundary layer at the lateral boundary d

d� dQ: ð28Þ

In this case, the heat is generated in a thin layer near the
boundary where the role of convective transport is insuffi-
cient with respect to molecular heat conduction. So practi-
cally all the heat released is removed through the boundary
by means of the latter. The temperature at the heated layer
periphery (see Eq. (3)) is of order

T ðzÞ � d2
q

QðzÞ
k

: ð29Þ

The natural convection pattern will coincide with that for a
fluid without internal heat generation, the effective bound-
ary conditions given by (29). In particular, if both the
upper and the lower boundaries are adiabatic there will
be no reason for convection to be established.
3. Hemispherical geometry: cooled upper boundary

The above analysis is applicable to more complex axi-
symmetrical geometry, e.g. hemispherical. Then, under
condition (5), the balance equations for the bulk remain
as above; the boundary layer equations and the closing
relations as well are written with regard to the geometrical
factor [4,5]. Valid for them are estimates analogous to (9)–
(11). The conditions of temperature stratification occur-
rence in the bulk are the same as found above. The energy
balance outside the BLs is described, as noticed, by Eq.
(21). Correspondingly, the stratification regime is deter-
mined by distribution of cross-sectional average of volu-
metric heat release. Particularly, whether this value is
independent on the vertical coordinate the temperature dis-
tribution in the stratified region should be the same as if the
heat generation was uniform.

The parameter d in condition (5) is now defined, accord-
ing to [4], as

d � R � Ra�1=6
I :

So the analogy to the condition of possible correspondence
(27) for hemispherical geometry is

dQ

R
� Ra�1=6

I : ð30Þ

So far, the boundary condition at the upper horizontal
boundary was assumed to be adiabatic. In case of cooled
upper boundary the maximal temperature is achieved in-
side the pool. Thereby in the region above the temperature
maximum level the conditions for Rayleigh–Benard con-
vection are established. In the range of Rayleigh numbers
interesting for the practical applications (108 < RaI <
1015) turbulent convection regime is set up in this region.
Owing to this the time–average temperature of the core
(outside the boundary layers) is practically uniform. So
the heat flux distribution to the boundary of the Ray-
leigh–Benard region must be specified by the averaged over
this region volumetric heat release.

4. Numerical experiment

By means of the FLUENT 6.2 code [8] a series of calcu-
lations of free convection in a cylindrical pool was carried
out. The heat release distribution was assumed either uni-
form, or given by the expression

QðrÞ ¼ Q
A

ch
r
dQ

� �
; ð31Þ

where A is given by the following expression:

A ¼ dQsh
1

dQ

� �
� d2

Qðch
1

dQ

� �
� 1Þ;

where r is the radial coordinate, the value of Q corresponds
to volumetric heat release in case of uniform heat genera-
tion. The temperature of the lateral and the bottom bound-
aries was assumed constant, while the upper boundary was
adiabatic. Presented below are the results of calculations
with RaI = 109, R = H, and the heated layer thickness
dQ = 0.2 � R, that is deliberately larger than the boundary
layer thickness at the given Rayleigh number. Figs. 1–4
show temperature and vertical velocity distributions,
streamlines in the bulk and velocity profiles at the half-
height horizontal cross section of the pool. The left side
on the figures corresponds to the boundary, the right side
corresponds to the axis.

It is well seen on the graphs that the region of tempera-
ture stratification occupies the whole volume except the
boundary layers, including the region without heat genera-
tion, right to the axis. Vertical flow velocity outside the
boundary layer quickly decreases with the distance from



Fig. 1. Distribution of local Rayleigh number Rar ¼ gaT ðr;zÞH3

mv

� �
in cases of non-uniform (a) and uniform (b) heat generation.

Fig. 2. Vertical velocity distribution in cases of non-uniform (a) and uniform (b) heat generation.

Fig. 3. Streamlines in cases of non-uniform (a) and uniform (b) heat generation.

Fig. 4. Vertical velocity vs transversal coordinate y at z = 0.5 � H in cases of non-uniform (a) and uniform (b) heat generation.
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Fig. 5. The ratio of vertical velocity to the local volumetric heat release
rate (dimensionless) vs transversal coordinate at z = 0.5 � H (in case of
non-uniform heat generation).

Fig. 6. Boundary heat flux distribution in cases of non-uniform (solid
curve) and uniform (dashed curve) heat generation.
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the boundary, in the same manner as the heat release rate
does (see Fig. 5). This agrees well with the theoretical
results obtained above. Fig. 6 shows close correspondence
of the sidewall heat flux distribution to that in case of uni-
form heat generation.
5. Conclusions

The main results of the work are as follows:
Under condition of the smallness of the boundary layer

thickness, as compared to the characteristic scale of volu-
metric heat release inhomogeneity, the general structure
of free convection (the stable stratification region, the Ray-
leigh–Benard layer near the cooled upper boundary, free-
convective boundary layers) is the same as with uniform
heat generation (see [4,6]). In such case, many details of
heat release distribution play the minor role; the key factor
is the vertical (axial) distribution of the heat generation
(average volumetric heat release over the horizontal
cross-section) QðzÞ. In case of QðzÞ ¼ const entire quantita-
tive correspondence to the uniform heat generation case is
achieved.

If the heat-generating layer thickness is small with
respect to the hydrodynamic boundary layer thickness
the flow structure corresponds to free convection without
internal heat sources. The effective boundary temperature
distribution in this case is governed by the boundary heat
release.
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